95 research outputs found

    Modelling and simulation of a quad-rotor helicopter

    Get PDF
    Small size quad-rotor helicopters are often used due to the simplicity of their construction and maintenance, their ability to hover and also to take-off and land vertically. The first step in control development is an adequate dynamic system modelling, which should involve a faithful mathematical representation of the mechanical system. This paper presents a detailed dynamic analytical model of the quad-rotor helicopter using the linear Taylor series approximation method. The developed analytical model was simulated in the MatLab/Simulink environment and the dynamic behaviour of the quad-rotor assessed due to voltage changes. The model is further calibrated and linearized for use on any quad-rotor helicopter

    Computational fluid dynamics model of a quad-rotor helicopter for dynamic analysis

    Get PDF
    The control and performance of a quad-rotor helicopter UAV is greatly influenced by its aerodynamics, which in turn is affected by the interactions with features in its remote environment. This paper presents details of Computational Fluid Dynamics (CFD) simulation and analysis of a quadrotor helicopter. It starts by presenting how SolidWorks software is used to develop a 3-D Computer Aided Design (CAD) model of the quad-rotor helicopter, then describes how CFD is used as a computer based mathematical modelling tool to simulate and analyze the effects of wind flow patterns on the performance and control of the quadrotor helicopter. For the purpose of developing a robust adaptive controller for the quad-rotor helicopter to withstand any environmental constraints, which is not within the scope of this paper; this work accurately models the quad-rotor static and dynamic characteristics from a limited number of time-accurate CFD simulations

    Quantum-Inspired Machine Learning: a Survey

    Full text link
    Quantum-inspired Machine Learning (QiML) is a burgeoning field, receiving global attention from researchers for its potential to leverage principles of quantum mechanics within classical computational frameworks. However, current review literature often presents a superficial exploration of QiML, focusing instead on the broader Quantum Machine Learning (QML) field. In response to this gap, this survey provides an integrated and comprehensive examination of QiML, exploring QiML's diverse research domains including tensor network simulations, dequantized algorithms, and others, showcasing recent advancements, practical applications, and illuminating potential future research avenues. Further, a concrete definition of QiML is established by analyzing various prior interpretations of the term and their inherent ambiguities. As QiML continues to evolve, we anticipate a wealth of future developments drawing from quantum mechanics, quantum computing, and classical machine learning, enriching the field further. This survey serves as a guide for researchers and practitioners alike, providing a holistic understanding of QiML's current landscape and future directions.Comment: 56 pages, 13 figures, 8 table

    Aqua­bis(1H-imidazole-κN 3)bis­(4-methyl­benzoato)-κO;κO,O′-nickel(II)

    Get PDF
    In the mononuclear title compound, [Ni(C8H7O2)2(C3H4N2)2(H2O)], the NiII atom is coordinated by three carboxylate O atoms (from a bidentate 4-methyl­benzoate ligand and a monodentate 4-methyl­benzoate ligand), two N atoms (from two imidazole ligands) and a water mol­ecule in an octa­hedral geometry. Inter­molecular O—H⋯O hydrogen-bonding inter­actions lead to infinite chains, which are further self-assembled into a supra­molecular network through inter­molecular N—H⋯O hydrogen-bonding inter­actions and π–π stacking [centroid–centroid distance = 3.717 (2) Å]

    The serum matrix metalloproteinase-9 level is an independent predictor of recurrence after ablation of persistent atrial fibrillation

    Get PDF
    OBJECTIVES: This study investigated whether the serum matrix metalloproteinase-9 level is an independent predictor of recurrence after catheter ablation for persistent atrial fibrillation. METHODS: Fifty-eight consecutive patients with persistent atrial fibrillation were enrolled and underwent catheter ablation. The serum matrix metalloproteinase-9 level was detected before ablation and its relationship with recurrent arrhythmia was analyzed at the end of the follow-up. RESULTS: After a mean follow-up of 12.1±7.2 months, 21 (36.2%) patients had a recurrence of their arrhythmia after catheter ablation. At baseline, the matrix metalloproteinase-9 level was higher in the patients with recurrence than in the non-recurrent group (305.77±88.90 vs 234.41±93.36 ng/ml, respectively, p=0.006). A multivariate analysis showed that the matrix metalloproteinase-9 level was an independent predictor of arrhythmia recurrence, as was a history of atrial fibrillation and the diameter of the left atrium. CONCLUSION: The serum matrix metalloproteinase-9 level is an independent predictor of recurrent arrhythmia after catheter ablation in patients with persistent atrial fibrillation

    Correlation between blood glucose and cerebrospinal fluid glucose levels in patients with differences in glucose metabolism

    Get PDF
    ObjectivesWe aimed to determine a method to identify normal cerebrospinal fluid (CSF) glucose levels by examining the correlation between blood and CSF glucose levels in patients with normal and abnormal glucose metabolism.MethodsOne hundred ninety-five patients were divided into two groups according to their glucose metabolism. The glucose levels were obtained from CSF and fingertip blood at 6, 5, 4, 3, 2, 1, and 0  h before lumbar puncture. SPSS 22.0 software was used for the statistical analysis.ResultsIn both the normal and abnormal glucose metabolism groups, CSF glucose levels increased with blood glucose levels at 6, 5, 4, 3, 2, 1, and 0  h before lumbar puncture. In the normal glucose metabolism group, the CSF/blood glucose ratio range was 0.35–0.95 at 0–6  h before lumbar puncture, and the CSF/average blood glucose ratio range was 0.43–0.74. In the abnormal glucose metabolism group, the CSF/blood glucose ratio range was 0.25–1.2 at 0–6  h before lumbar puncture, and the CSF/average blood glucose ratio range was 0.33–0.78.ConclusionThe CSF glucose level is influenced by the blood glucose level 6  h before lumbar puncture. In patients with normal glucose metabolism, direct measurement of the CSF glucose level can be used to determine whether the CSF level is normal. However, in patients with abnormal or unclear glucose metabolism, the CSF/average blood glucose ratio should be used to determine whether the CSF glucose level is normal

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Employ the Taguchi Method to Optimize BPNN's Architectures in Car Body Design System

    No full text
    Abstract Previous research works tried to optimize the architectures of Back Propagation Neural Netwo rks (BPNN) in order to enhance their performance. However, the using of appropriate method to perform this task still needs expanding knowledge. The paper studies the effect and the benefit of using Taguchi method to optimize the architecture o f BPNN car body design system. The paper started with literatures review to define factors and level of BPNN parameters for number of hidden layer, nu mber of neurons, learn ing algorithm, and etc. Then the BPNN arch itecture is optimized by Taguchi method with Mean Square Error (MSE) indicator. The Signal to No ise (S/N) ratio, analysis of variance (ANOVA) and analysis of means (ANOM) have been employed to identify the Taguchi results. The optimal BPNN training has been used successfully to tackle uncertain of h idden layer's parameters structure. It has faster iterations to reach the convergent condition and it has ten times better MSE achievement than NN machine expert. The paper still shows how to use the informat ion of car body shapes, car speed, vibration, noise, and fuel consumption of the car body database in BPNN training and validation
    corecore